Serveur d'exploration sur les interactions arbre microorganisme

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Do host-associated gut microbiota mediate the effect of an herbicide on disease risk in frogs?

Identifieur interne : 000119 ( Main/Exploration ); précédent : 000118; suivant : 000120

Do host-associated gut microbiota mediate the effect of an herbicide on disease risk in frogs?

Auteurs : Sarah A. Knutie [États-Unis] ; Caitlin R. Gabor [États-Unis] ; Kevin D. Kohl [États-Unis] ; Jason R. Rohr [États-Unis]

Source :

RBID : pubmed:29030867

Descripteurs français

English descriptors

Abstract

Environmental stressors, such as pollutants, can increase disease risk in wildlife. For example, the herbicide atrazine affects host defences (e.g. resistance and tolerance) of the amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd), but the mechanisms for these associations are not entirely clear. Given that pollutants can alter the gut microbiota of hosts, which in turn can affect their health and immune systems, one potential mechanism by which pollutants could increase infection risk is by influencing host-associated microbiota. Here, we test whether early-life exposure to the estimated environmental concentration (EEC; 200 μg/L) of atrazine affects the gut bacterial composition of Cuban tree frog (Osteopilus septentrionalis) tadpoles and adults and whether any atrazine-induced change in community composition might affect host defences against Bd. We also determine whether early-life changes in the stress hormone corticosterone affect gut microbiota by experimentally inhibiting corticosterone synthesis with metyrapone. With the exception of changing the relative abundances of two bacterial genera in adulthood, atrazine did not affect gut bacterial diversity or community composition of tadpoles (in vivo or in vitro) or adults. Metyrapone did not significantly affect bacterial diversity of tadpoles, but significantly increased bacterial diversity of adults. Gut bacterial diversity during Bd exposure did not predict host tolerance or resistance to Bd intensity in tadpoles or adults. However, early-life bacterial diversity negatively predicted Bd intensity as adult frogs. Specifically, Bd intensity as adults was associated negatively with the relative abundance of phylum Fusobacteria in the guts of tadpoles. Our results suggest that the effect of atrazine on Bd infection risk is not mediated by host-associated microbiota because atrazine does not affect microbiota of tadpoles or adults. However, host-associated microbes seem important in host resistance to Bd because the early-life microbiota, during immune system development, predicted later-life infection risk with Bd. Overall, our study suggests that increasing gut bacterial diversity and relative abundances of Fusobacteria might have lasting positive effects on amphibian health.

DOI: 10.1111/1365-2656.12769
PubMed: 29030867
PubMed Central: PMC5812784


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Do host-associated gut microbiota mediate the effect of an herbicide on disease risk in frogs?</title>
<author>
<name sortKey="Knutie, Sarah A" sort="Knutie, Sarah A" uniqKey="Knutie S" first="Sarah A" last="Knutie">Sarah A. Knutie</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gabor, Caitlin R" sort="Gabor, Caitlin R" uniqKey="Gabor C" first="Caitlin R" last="Gabor">Caitlin R. Gabor</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, Texas State University, San Marcos, TX, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, Texas State University, San Marcos, TX</wicri:regionArea>
<placeName>
<region type="state">Texas</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kohl, Kevin D" sort="Kohl, Kevin D" uniqKey="Kohl K" first="Kevin D" last="Kohl">Kevin D. Kohl</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
<settlement type="city">Pittsburgh</settlement>
</placeName>
<orgName type="university">Université de Pittsburgh</orgName>
</affiliation>
</author>
<author>
<name sortKey="Rohr, Jason R" sort="Rohr, Jason R" uniqKey="Rohr J" first="Jason R" last="Rohr">Jason R. Rohr</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Integrative Biology, University of South Florida, Tampa, FL, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Integrative Biology, University of South Florida, Tampa, FL</wicri:regionArea>
<placeName>
<region type="state">Floride</region>
<settlement type="city">Tampa</settlement>
</placeName>
<orgName type="university">Université de Floride du Sud</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29030867</idno>
<idno type="pmid">29030867</idno>
<idno type="doi">10.1111/1365-2656.12769</idno>
<idno type="pmc">PMC5812784</idno>
<idno type="wicri:Area/Main/Corpus">000127</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000127</idno>
<idno type="wicri:Area/Main/Curation">000127</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000127</idno>
<idno type="wicri:Area/Main/Exploration">000127</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Do host-associated gut microbiota mediate the effect of an herbicide on disease risk in frogs?</title>
<author>
<name sortKey="Knutie, Sarah A" sort="Knutie, Sarah A" uniqKey="Knutie S" first="Sarah A" last="Knutie">Sarah A. Knutie</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gabor, Caitlin R" sort="Gabor, Caitlin R" uniqKey="Gabor C" first="Caitlin R" last="Gabor">Caitlin R. Gabor</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, Texas State University, San Marcos, TX, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, Texas State University, San Marcos, TX</wicri:regionArea>
<placeName>
<region type="state">Texas</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kohl, Kevin D" sort="Kohl, Kevin D" uniqKey="Kohl K" first="Kevin D" last="Kohl">Kevin D. Kohl</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
<settlement type="city">Pittsburgh</settlement>
</placeName>
<orgName type="university">Université de Pittsburgh</orgName>
</affiliation>
</author>
<author>
<name sortKey="Rohr, Jason R" sort="Rohr, Jason R" uniqKey="Rohr J" first="Jason R" last="Rohr">Jason R. Rohr</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Integrative Biology, University of South Florida, Tampa, FL, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Integrative Biology, University of South Florida, Tampa, FL</wicri:regionArea>
<placeName>
<region type="state">Floride</region>
<settlement type="city">Tampa</settlement>
</placeName>
<orgName type="university">Université de Floride du Sud</orgName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Journal of animal ecology</title>
<idno type="eISSN">1365-2656</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Anura (immunology)</term>
<term>Anura (microbiology)</term>
<term>Atrazine (toxicity)</term>
<term>Biodiversity (MeSH)</term>
<term>Chytridiomycota (physiology)</term>
<term>Corticosterone (pharmacology)</term>
<term>Disease Susceptibility (MeSH)</term>
<term>Gastrointestinal Microbiome (drug effects)</term>
<term>Herbicides (toxicity)</term>
<term>Host Microbial Interactions (immunology)</term>
<term>Larva (drug effects)</term>
<term>Larva (microbiology)</term>
<term>Mycoses (microbiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Anura (immunologie)</term>
<term>Anura (microbiologie)</term>
<term>Atrazine (toxicité)</term>
<term>Biodiversité (MeSH)</term>
<term>Chytridiomycota (physiologie)</term>
<term>Corticostérone (pharmacologie)</term>
<term>Herbicides (toxicité)</term>
<term>Interactions hôte-microbes (immunologie)</term>
<term>Larve (effets des médicaments et des substances chimiques)</term>
<term>Larve (microbiologie)</term>
<term>Microbiome gastro-intestinal (effets des médicaments et des substances chimiques)</term>
<term>Mycoses (microbiologie)</term>
<term>Prédisposition aux maladies (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Corticosterone</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="toxicity" xml:lang="en">
<term>Atrazine</term>
<term>Herbicides</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Gastrointestinal Microbiome</term>
<term>Larva</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Larve</term>
<term>Microbiome gastro-intestinal</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Anura</term>
<term>Interactions hôte-microbes</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Anura</term>
<term>Host Microbial Interactions</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Anura</term>
<term>Larve</term>
<term>Mycoses</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Anura</term>
<term>Larva</term>
<term>Mycoses</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Corticostérone</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Chytridiomycota</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Chytridiomycota</term>
</keywords>
<keywords scheme="MESH" qualifier="toxicité" xml:lang="fr">
<term>Atrazine</term>
<term>Herbicides</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Biodiversity</term>
<term>Disease Susceptibility</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Biodiversité</term>
<term>Prédisposition aux maladies</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Environmental stressors, such as pollutants, can increase disease risk in wildlife. For example, the herbicide atrazine affects host defences (e.g. resistance and tolerance) of the amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd), but the mechanisms for these associations are not entirely clear. Given that pollutants can alter the gut microbiota of hosts, which in turn can affect their health and immune systems, one potential mechanism by which pollutants could increase infection risk is by influencing host-associated microbiota. Here, we test whether early-life exposure to the estimated environmental concentration (EEC; 200 μg/L) of atrazine affects the gut bacterial composition of Cuban tree frog (Osteopilus septentrionalis) tadpoles and adults and whether any atrazine-induced change in community composition might affect host defences against Bd. We also determine whether early-life changes in the stress hormone corticosterone affect gut microbiota by experimentally inhibiting corticosterone synthesis with metyrapone. With the exception of changing the relative abundances of two bacterial genera in adulthood, atrazine did not affect gut bacterial diversity or community composition of tadpoles (in vivo or in vitro) or adults. Metyrapone did not significantly affect bacterial diversity of tadpoles, but significantly increased bacterial diversity of adults. Gut bacterial diversity during Bd exposure did not predict host tolerance or resistance to Bd intensity in tadpoles or adults. However, early-life bacterial diversity negatively predicted Bd intensity as adult frogs. Specifically, Bd intensity as adults was associated negatively with the relative abundance of phylum Fusobacteria in the guts of tadpoles. Our results suggest that the effect of atrazine on Bd infection risk is not mediated by host-associated microbiota because atrazine does not affect microbiota of tadpoles or adults. However, host-associated microbes seem important in host resistance to Bd because the early-life microbiota, during immune system development, predicted later-life infection risk with Bd. Overall, our study suggests that increasing gut bacterial diversity and relative abundances of Fusobacteria might have lasting positive effects on amphibian health.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29030867</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>12</Month>
<Day>20</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1365-2656</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>87</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2018</Year>
<Month>03</Month>
</PubDate>
</JournalIssue>
<Title>The Journal of animal ecology</Title>
<ISOAbbreviation>J Anim Ecol</ISOAbbreviation>
</Journal>
<ArticleTitle>Do host-associated gut microbiota mediate the effect of an herbicide on disease risk in frogs?</ArticleTitle>
<Pagination>
<MedlinePgn>489-499</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/1365-2656.12769</ELocationID>
<Abstract>
<AbstractText>Environmental stressors, such as pollutants, can increase disease risk in wildlife. For example, the herbicide atrazine affects host defences (e.g. resistance and tolerance) of the amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd), but the mechanisms for these associations are not entirely clear. Given that pollutants can alter the gut microbiota of hosts, which in turn can affect their health and immune systems, one potential mechanism by which pollutants could increase infection risk is by influencing host-associated microbiota. Here, we test whether early-life exposure to the estimated environmental concentration (EEC; 200 μg/L) of atrazine affects the gut bacterial composition of Cuban tree frog (Osteopilus septentrionalis) tadpoles and adults and whether any atrazine-induced change in community composition might affect host defences against Bd. We also determine whether early-life changes in the stress hormone corticosterone affect gut microbiota by experimentally inhibiting corticosterone synthesis with metyrapone. With the exception of changing the relative abundances of two bacterial genera in adulthood, atrazine did not affect gut bacterial diversity or community composition of tadpoles (in vivo or in vitro) or adults. Metyrapone did not significantly affect bacterial diversity of tadpoles, but significantly increased bacterial diversity of adults. Gut bacterial diversity during Bd exposure did not predict host tolerance or resistance to Bd intensity in tadpoles or adults. However, early-life bacterial diversity negatively predicted Bd intensity as adult frogs. Specifically, Bd intensity as adults was associated negatively with the relative abundance of phylum Fusobacteria in the guts of tadpoles. Our results suggest that the effect of atrazine on Bd infection risk is not mediated by host-associated microbiota because atrazine does not affect microbiota of tadpoles or adults. However, host-associated microbes seem important in host resistance to Bd because the early-life microbiota, during immune system development, predicted later-life infection risk with Bd. Overall, our study suggests that increasing gut bacterial diversity and relative abundances of Fusobacteria might have lasting positive effects on amphibian health.</AbstractText>
<CopyrightInformation>© 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Knutie</LastName>
<ForeName>Sarah A</ForeName>
<Initials>SA</Initials>
<Identifier Source="ORCID">0000-0001-6423-9561</Identifier>
<AffiliationInfo>
<Affiliation>Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gabor</LastName>
<ForeName>Caitlin R</ForeName>
<Initials>CR</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, Texas State University, San Marcos, TX, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kohl</LastName>
<ForeName>Kevin D</ForeName>
<Initials>KD</Initials>
<Identifier Source="ORCID">0000-0003-1126-2949</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rohr</LastName>
<ForeName>Jason R</ForeName>
<Initials>JR</Initials>
<AffiliationInfo>
<Affiliation>Department of Integrative Biology, University of South Florida, Tampa, FL, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>figshare</DataBankName>
<AccessionNumberList>
<AccessionNumber>10.6084/m9.figshare.5417629</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 GM109499</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 TW010286</GrantID>
<Acronym>TW</Acronym>
<Agency>FIC NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>11</Month>
<Day>27</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Anim Ecol</MedlineTA>
<NlmUniqueID>0376574</NlmUniqueID>
<ISSNLinking>0021-8790</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D006540">Herbicides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>QJA9M5H4IM</RegistryNumber>
<NameOfSubstance UI="D001280">Atrazine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>W980KJ009P</RegistryNumber>
<NameOfSubstance UI="D003345">Corticosterone</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001001" MajorTopicYN="N">Anura</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001280" MajorTopicYN="N">Atrazine</DescriptorName>
<QualifierName UI="Q000633" MajorTopicYN="Y">toxicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044822" MajorTopicYN="Y">Biodiversity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008411" MajorTopicYN="N">Chytridiomycota</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003345" MajorTopicYN="N">Corticosterone</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004198" MajorTopicYN="N">Disease Susceptibility</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000069196" MajorTopicYN="N">Gastrointestinal Microbiome</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006540" MajorTopicYN="N">Herbicides</DescriptorName>
<QualifierName UI="Q000633" MajorTopicYN="N">toxicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000076662" MajorTopicYN="N">Host Microbial Interactions</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007814" MajorTopicYN="N">Larva</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009181" MajorTopicYN="N">Mycoses</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Batrachochytrium dendrobatidis </Keyword>
<Keyword MajorTopicYN="Y">Osteopilus septentrionalis </Keyword>
<Keyword MajorTopicYN="Y">Fusobacteria</Keyword>
<Keyword MajorTopicYN="Y">atrazine</Keyword>
<Keyword MajorTopicYN="Y">bacteria</Keyword>
<Keyword MajorTopicYN="Y">chytrid fungus</Keyword>
<Keyword MajorTopicYN="Y">corticosterone</Keyword>
<Keyword MajorTopicYN="Y">stress</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>01</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>09</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>10</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>12</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>10</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29030867</ArticleId>
<ArticleId IdType="doi">10.1111/1365-2656.12769</ArticleId>
<ArticleId IdType="pmc">PMC5812784</ArticleId>
<ArticleId IdType="mid">NIHMS912441</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Aquat Toxicol. 2009 Apr 9;92(2):95-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19237205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2016 Aug 16;113(33):9345-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27482088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Health Perspect. 2004 Jul;112(10):1054-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15238276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Zool. 1998 Nov-Dec;71(6):671-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9798254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Endocrinol. 2014 Aug;28(8):1221-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24892638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Immunol. 2014 Nov;35(11):507-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25172617</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2009 Apr;5(4):e1000352</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19360128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Nov 29;108(48):19288-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22084077</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Oct 18;449(7164):811-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17943117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Immunol. 2004 Jun;4(6):478-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15173836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Appl. 2010 Dec;20(8):2263-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21265456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Dec 3;306(5702):1783-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15486254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Microbiol. 2016 Mar;24(3):161-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26916805</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunotoxicol. 2008 Oct;5(4):419-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19404876</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2013 Dec 7;280(1772):20131502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24266041</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Endocrinol (Copenh). 1967 Nov;56(3):376-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4293345</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Oct 30;455(7217):1235-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18972018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2012 Jun 8;336(6086):1255-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22674335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2012 Aug;6(8):1621-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22402401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Toxicol Chem. 2001 Jan;20(1):84-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11351418</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2015 Nov 30;11(11):e1005658</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26619199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Comp Biochem Physiol C Pharmacol Toxicol Endocrinol. 1999 Feb;122(2):191-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10190044</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Periodontol. 2012 May;39(5):425-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22417294</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Microbiol. 2013 Apr;66(4):350-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23224412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Toxicol Sci. 2009 Nov;112(1):78-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19690231</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 1992 Sep;9(1):29-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1389314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2008 Dec 23;6(12):e4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19222305</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2013 Nov 05;2:e01202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24192039</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2006 Jul;72(7):5069-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16820507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2018 Feb;186(2):393-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29222721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol Rep. 2013 Dec;5(6):899-903</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24249298</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Toxicol Chem. 2015 May;34(5):1113-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25651416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Zool. 2002 Jan 1;292(1):32-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11754020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Aug 25;313(5790):1072-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16931750</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Oct 1;26(19):2460-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20709691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Aug 12;105 Suppl 1:11466-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18695221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Lett. 2016 Jan;12(1):20150875</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26740566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Behav Immun. 2011 Mar;25(3):397-407</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21040780</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Jul 31;325(5940):617-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19644121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann N Y Acad Sci. 2010 May;1195:129-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20536821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dis Aquat Organ. 2004 Aug 9;60(2):141-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15460858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(1):e53653</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23335968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Int. 2001 Jun;26(7-8):483-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11485216</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>NPJ Biofilms Microbiomes. 2016 May 04;2:16003</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28721242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2012 Jun 8;336(6086):1268-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22674334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Dent Res. 2010 Nov;89(11):1247-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20739702</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Jan 15;26(2):266-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19914921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2015 Feb 17;112(7):1929-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25691701</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2014;5:3114</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24445449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Nov 2;318(5851):812-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17975068</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 1999 Jun;51(6):877-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10422233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bacteriol Rev. 1972 Jun;36(2):146-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4557166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2017 Jul 20;8(1):86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28729558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aquat Toxicol. 2007 Aug 15;84(1):27-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17610964</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunol Rev. 2014 Jul;260(1):21-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24942679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2013 Jul 16;47(14):7958-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23777241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2010 May;7(5):335-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20383131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Integr Comp Biol. 2017 Oct 1;57(4):732-742</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28662573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Rev Toxicol. 2015;45(10):813-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26565685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Med. 2015 Jun 24;7(1):55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26170900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Immunol. 2009 May;9(5):313-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19343057</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2017 Apr;183(4):1031-1040</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28138818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Apr 30;9(4):e96375</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24789229</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Health Perspect. 2011 Aug;119(8):1098-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21463979</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2012 Feb 24;335(6071):936-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22363001</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 Dec 19;504(7480):446-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24226770</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2010 Sep;78(9):3981-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20584973</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2009 Jul;26(7):1641-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19377059</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2006 May;60(5):945-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16817535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Psychiatry. 2009 Feb 1;65(3):263-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18723164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gut. 2016 Apr;65(4):575-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26511795</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Connecticut</li>
<li>Floride</li>
<li>Pennsylvanie</li>
<li>Texas</li>
</region>
<settlement>
<li>Pittsburgh</li>
<li>Tampa</li>
</settlement>
<orgName>
<li>Université de Floride du Sud</li>
<li>Université de Pittsburgh</li>
</orgName>
</list>
<tree>
<country name="États-Unis">
<region name="Connecticut">
<name sortKey="Knutie, Sarah A" sort="Knutie, Sarah A" uniqKey="Knutie S" first="Sarah A" last="Knutie">Sarah A. Knutie</name>
</region>
<name sortKey="Gabor, Caitlin R" sort="Gabor, Caitlin R" uniqKey="Gabor C" first="Caitlin R" last="Gabor">Caitlin R. Gabor</name>
<name sortKey="Kohl, Kevin D" sort="Kohl, Kevin D" uniqKey="Kohl K" first="Kevin D" last="Kohl">Kevin D. Kohl</name>
<name sortKey="Rohr, Jason R" sort="Rohr, Jason R" uniqKey="Rohr J" first="Jason R" last="Rohr">Jason R. Rohr</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/TreeMicInterV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000119 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000119 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    TreeMicInterV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29030867
   |texte=   Do host-associated gut microbiota mediate the effect of an herbicide on disease risk in frogs?
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29030867" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a TreeMicInterV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Thu Nov 19 16:52:21 2020. Site generation: Thu Nov 19 16:52:50 2020